2014/23	MATH2060 lecture	· · · · · ·
- HW due April:	e llan	· · · · · ·
- FINAL : thirsda	May	· · · · · ·
Taylor's Sovies		
Recall By repeated $\left(\sum_{N=0}^{\infty} a_{n} x^{n}\right)^{(k)}$	= $\sum_{n=k}^{\infty} \frac{n!}{(n-k)!} a_n x^{n-k}$, $x \in (-R,R)$, $\forall k \in \mathbb{N}$.	
The 94,13/11 niqueness Th) 70 Saxn Sbach compage + the same C.	e e e e e e
fon (-r,r), r Pf: By remark alc	>0, then $a_n = b_n \forall n \in \mathbb{N}$. we, $f^{(k)}(x) = \sum_{n=1}^{\infty} \frac{n!}{(k)} a_n x^{n-k}$	

$f^{(k)}(0) = \frac{k!}{(k+k)!} a_{k} \Rightarrow a_{k} = \frac{1}{k!} f^{(k)}(0)$
Similarly, $b_{k} = \frac{1}{k!} f^{(k)}(0)$.
Taylor Serves
let f have derivatives of all orders at a point CER. Then by above,
we can have the poner series $g(x) = \sum_{n=1}^{\infty} \frac{f^{(n)}(c)}{(x-c)^n}$
which will settify $q^{(n)}(c) = f^{(n)}(c)$. Une N.
a four issues: le priori
i) We don't kenne vhether the poner series converges (except at c).
2) If it conerges, we don't know if it agrees with f on (-R,R).
(Exercise 9.4.12)

Def: We say $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x-c)^n$ is the Taylor Series Expansion of fot c if $\exists R > 0$ s.t. $\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x-c)^n$ converges to f(x) on (c-R, C+R). fonice) are called Taylor Coefficients. Ruch: 1) Reveal intaylor's The (The G4.1), Ru(t) >0 on (c-R, ttR) 2) By Uniquenoss The, if Taylor Series Exponsion exists, then it is unique. Examples 9.4.4 a) f(x) = snix, $K \in \mathbb{R}$. $f^{(u)}(x) = \begin{cases} (-1)^k snix & \text{if } n = 2k \\ (-1)^k cosx & \text{if } n = 2k \\ \end{cases}$

In particular, at c=0, $f^{(m)}(0) = \begin{cases} 0 & \text{if } n=2k \\ (-1)k & \text{if } n=2k \end{cases}$ Furthermore, by Taylor's Thu: $R_{n}(x) \in \operatorname{sottisfies} |R_{n}(x)| \leq |f^{(n+1)}(C_{i})| |x|^{n+1} \quad \text{for some } C_{i} \text{ between } x \text{ curl } 0.$ $\leq \frac{|x|^{n+1}}{(n+1)!} \rightarrow 0 a_{0} n \rightarrow \infty, \forall x \in \mathbb{R},$ Taylor Expansion of f(x) = sink even 0, is $sink = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$, $fx \in \mathbb{R}$, n=0 (2n+1)! $fx \in \mathbb{R}$, $Differentication Thm = cosk = \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$, $\forall x \in \mathbb{R}$

Ju this example, we used Rule) from Taylor's The to determine the
radius of convergence.
If we want to us, him and isn't well -defined.
For $p = \lim_{k \to \infty} \left(a_n ^{\frac{1}{k}} \right) = \lim_{k \to \infty} \left(\frac{1}{(a_{k+1})!} \right)^{\frac{1}{2k+1}} = 0$. So $R = \pm \infty$.
2) $q(x) = e^{x}$, $x \in \mathbb{R}$. Then $q^{(n)}(x) = e^{x}$ $\forall n \in \mathbb{N}$. $q^{(n)}(0) = 1$
= Corefficients are ni
$ R_n(x) \leq \frac{e^c}{(n+1)!} x ^{n+1}$ for some c between x and 0.
$\leq \frac{e^{ x } x ^{n+1}}{(n+1)!} \rightarrow 0 \text{ as } n \rightarrow \infty$, $\forall x \in \mathbb{R}$
ex = $\sum_{n=0}^{\infty} \frac{x^n}{n!}$, $\forall x \in \mathbb{R}$, is the Taylor exponsion of e^x at 0.

Furthermore, $e^{x} = e^{c}e^{x-c} = e^{c}\sum_{n=0}^{\infty} \frac{1}{n!}(x-c)^{n} = \sum_{n=0}^{\infty} \frac{e^{(x-c)^{n}}}{n!}$ fix e^{R} is the Taylor Expansion for e^{x} centred at x=c. Rinh: 1) This argument implies the radius of convergence is + 00 $P = linsup(|a_u|^{\frac{1}{n}}) = lin_{\Lambda \to \infty} (\frac{1}{n})^{\frac{1}{n}} = 0 \implies R = +\infty.$ $\lim_{n\to\infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n\to\infty} \frac{n!}{(n+1)!} = \lim_{n\to\infty} \frac{n!}{(n+1)!} = 100$