2074123
MATH 2060 lecture
Announcements:

- HW due april 28 llam
- FINAL : thursday II May

Taylor's Series
Recall: By repeated application of differentiation In for porer series,

$$
\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)^{(k)}=\sum_{n=k}^{\infty} \frac{n!}{(n-k)!} a_{n} x^{n-k}, x \in(-R, R), \forall k \in \mathbb{N}
$$

In 94.11 (Uniqueness $\left.T_{n}\right)$: If $\sum a_{n} x^{n}, \sum b_{n} x^{n}$ converge to the same function f on $(-r, r), r>0$, then $a_{n}=b_{n} \quad \forall n \in \mathbb{N}$.
Pf: By remouh above, $f^{(k)}(x)=\sum_{n=k}^{\infty} \frac{n!}{(n-k)!} a_{n} x^{n-k}$

$$
f^{(k)}(0)=\frac{k!}{(k-k)!} a_{k} \Rightarrow a_{k}=\frac{1}{k!} f^{(k)}(0)
$$

Similarly, $b_{k}=\frac{1}{k!} f^{(k)}(0)$.
Taylor Series:
let f have derivatives of all orders at a point $c \in \mathbb{R}$. Then by above, we can have the power series $g(x)=\sum_{n=0}^{\infty} \frac{f^{(h)}(c)}{n!}(x-c)^{n}$.
which mill salify $g^{(n)}(c)=f^{(n)}(c), \forall n \in \mathbb{N}$.
a feer issues: A prion

1) We doit kenw whether the power series converges (except at C).
2) If it concierges, we doit know if it agrees with f on $(-R, R)$. (Exercise 9.4.12)

Def: We say $f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n^{\prime}}(x-c)^{n}$ is the Taylor Series Expansion of fat c if $\exists R>0$ sit.

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!}(x-c)^{n} \text { converges to } f(x) \text { on }(c-R, c+R) \text {. }
$$

$\frac{f^{(n)}\left(c_{1}\right)}{n!}$ are called Taybr Coefficients.
Rms: 1) Ieneed intaybor's $\operatorname{tm}(\operatorname{am} 64.1), R_{n}(x) \rightarrow 0$ on $(c-R, t+R)$
2) By Uniqueness Tm_{m} if Tayborseries Expansion exists, then it is unique.

Examples 9.4 .4
a) $f(x)=\sin x, k \in \mathbb{R} \quad f^{(1)}(x)=\left\{\begin{array}{ll}(-1)^{k} \sin x & \text { if } n=2 h \\ (-1)^{k} \cos x & \text { if } n=2 k+1\end{array}\right.$ in

In particular, at $c=0, f^{(n)}(0)= \begin{cases}0 & \text { if } n=2 k \\ (-i)^{k} & \text { if } n=2 k+1\end{cases}$
Furthermoe, by Taybors $T_{n}: R_{n}(x)$ satiffies

$$
\left|R_{n}(x)\right| \leqslant \frac{\left|f^{(n+1)}\left(c_{1}\right)\right||x|^{n-1}}{(n+1)!} \text { for some } C_{1} \text { between } x \text { and } 0
$$

$$
\leqslant \frac{|x|^{n+1}}{(n+1)!} \rightarrow 0 \text { as } n \rightarrow \infty, \quad \forall x \in \mathbb{R}
$$

Taylor Expausion of $f(x)=\sin x$ at 0 , is

$$
\begin{aligned}
& \sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}, f x \in \mathbb{R}, \\
& \text { Differentication } \operatorname{Im} \Rightarrow \cos x=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n}, \forall x \in \mathbb{R}
\end{aligned}
$$

In thin example, wee used $R_{n}(x)$ from Taylor's an to determie the radius of convergence.
If we wast ts us, $\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|$ isnit well-defincel.
For $\rho=\operatorname{linsup}\left(\left(\left.a_{n}\right|^{\frac{1}{x}}\right)=\lim _{k \rightarrow \infty}\left(\frac{1}{\left(z^{k}()^{1}\right)}\right)^{\frac{1}{2 k}+1}=0\right.$. So $R=+\infty$.
2) $g(x)=e^{x}, x \in \mathbb{R}$. Then $g^{(n)}(x)=e^{x} \quad \forall n \in \mathbb{N}, g^{(n)}(0)=1$
\Rightarrow Coefficients are $\frac{1}{n!}$
$\left|R_{n}(x)\right| \leqslant \frac{e^{c}}{(u+1)!}|x|^{n+1} \quad$ for some C belem x and 0 .

$$
\leqslant \frac{e^{|x|}|x|^{n+1}}{(n+1)!} \rightarrow 0 \text { as } n \rightarrow \infty, \forall x \in \mathbb{R}
$$

$e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}, \forall x \in \mathbb{R}$ is the Taylor expansion of e^{x} at 0 .

Furthermore, $e^{x}=e^{c} e^{x-c}=e^{c} \sum_{n=0}^{\infty} \frac{1}{n!}(x-c)^{n}=\sum_{n=0}^{\infty} \frac{e^{c}(x-c)^{n}}{n!}, \forall x \in \mathbb{R}$
is the Taylor Expansion for e^{x} centred at $x=c$.
Rums: 1) Tin argument implies the radio of convergence is $+\infty$

$$
\begin{aligned}
& \rho=\operatorname{linsup}\left(\left|a_{n}\right|^{\frac{1}{n}}\right)=\lim _{n \rightarrow \infty}\left(\frac{1}{n!}\right)^{\frac{1}{n}}=0 \Rightarrow R=+\infty . \\
& \lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|=\lim _{n \rightarrow \infty} \frac{\frac{1}{n!}}{\frac{1}{(n+1)!}}=\lim _{n \rightarrow \infty} n+1=+\infty .
\end{aligned}
$$

